China Best Sales 12V 20rpm Worm Geared Motor High Torque Electric DC Motor Metal vacuum pump engine

Product Description

Product Description

 

Product Description

Introducing the 4632 Worm Gear Reducer by HangZhou Xihu (West Lake) Dis. Motor Co., Ltd.

 

This versatile gear reducer is compatible with a 370 DC carbon brush motor or a brushless motor with built-in drive. It offers voltage range options of 6V, 12V, and 24V, providing flexibility for various applications.

 

With a wide range of ratios available, users can customize the motor’s performance to meet their specific needs. Whether for office, home, production automation, medical devices, security systems, consumer electronics, vending machines, photocopies, and more, this motor ensures reliable and efficient operation.

 

For detailed specifications and data for the 6VDC option, please refer to the provided data sheet.

   

Model Voltage

Unit: VDC

No load speed

Unit: rpm

Noload current

Unit: mA

Stall torque

Unit: kg.cm

Gear ratio
4632-370-40 6V 150 rpm 100mA 6.4 kg.cm 40:1
4632-370-65 6V 90 rpm 100mA 10 kg.cm 65:1
4632-370-150 6V 40 rpm 100mA 24 kg.cm 150:1
4632-370-200 6V 30 rpm 100mA 25 kg.cm 200:1
4632-370-260 6V 23 rpm 100mA 25 kg.cm 260:1
4632-370-340 6V 18 rpm 100mA 25kg.cm 340:1
4632-370-600 6V 10 rpm 100mA 25 kg.cm 600:1
4632-370-1000 6V 6 rpm 100mA 25kg.cm 1000:1

12VDC DATA SHEET

Model Voltage

Unit: VDC

No load speed

Unit: rpm

Noload current

Unit: mA

Stall torque

Unit: kg.cm

Gear ratio
4632-370-40 12V 150 rpm 60mA 6.4 kg.cm 40:1
4632-370-65 12V 90 rpm 60mA 10 kg.cm 65:1
4632-370-150 12V 40 rpm 60mA 24 kg.cm 150:1
4632-370-200 12V 30 rpm 60mA 25 kg.cm 200:1
4632-370-260 12V 23 rpm 60mA 25 kg.cm 260:1
4632-370-340 12V 18 rpm 60mA 25kg.cm 340:1
4632-370-600 12V 10 rpm 60mA 25 kg.cm 600:1
4632-370-1000 12V 6 rpm 60mA 25kg.cm 1000:1

Detailed Photos

Product Parameters

Certifications

Packaging & Shipping

Installation Instructions

6V 24V High Torque Worm Gear Motor

 

Product Development and Validation Process

 

HangZhou Xihu (West Lake) Dis. Motor Co., Ltd. guarantees quality with the 6V 24V High Torque Worm Gear Motor. Our motor is efficient, reliable, and powerful, undergoing a rigorous product development and validation process.

 

Company Profile

 

Welcome to HangZhou Xihu (West Lake) Dis. Motor Co., Ltd.

 

Specializing in AC and DC motors for various devices, HangZhou Xihu (West Lake) Dis. Motor Co., Ltd. offers a wide range of products for kitchen appliances, air flow products, power tools, and more.

 

Key Features:

  • Powerful DC brushed and brushless motors
  • Experienced engineers with extensive application expertise
  • Global presence with successful sales in over 20 countries
  • Compliance with EU & America regulations (CE standards, RoHS, etc.)
  • ISO9001:2001 certified management systems
  • Superior customer service
  • Reliable and high-quality products
  • Innovative designs in line with the latest trends
  • Wide product range to meet diverse needs
  • Competitive prices due to efficient business structure
  • Convenient ordering quantities

Partner with HangZhou Xihu (West Lake) Dis. Motor Co., Ltd. for customer-specific motion solutions that make a difference in project development and production needs.

 

Exhibitors and customers

      

Explore the power of our 6V/24V High Torque Worm Gear Motor for industrial use. Enjoy high efficiency and reliability.

FAQ

Welcome to HangZhou Xihu (West Lake) Dis. Motor Co., Ltd.

 

Welcome to HangZhou Xihu (West Lake) Dis. Motor Co., Ltd.

 

Explore our high-quality motors with the following key details:

 

  • Payment: Payment can be made by TT at sight or through trade assurance. A 30% down payment is required after the contract is valid, with the remaining 70% due before shipment.
  • Guarantee: Our motors come with a 12-month guarantee, and we aim to respond to any queries within 5 hours.
  • Parts Replacement: We provide spare parts free of charge for warranty-covered parts. Easy-broken parts will incur a cost fee.
  • Quality Control: Our factory holds a CE certificate, and we have a dedicated QC department to ensure product quality. We can assist in obtaining other certificates if needed.
  • Packaging: Our standard packaging involves anti-rust treatment, plastic film wrapping, and securing the motor on a wooden bracket.
  • Pre-Delivery Inspection: We offer online checking during on-site testing, detailed testing videos for review, and accept third-party testing. A comprehensive testing report will also be provided.
  •  

   /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Worm Gear Motor
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Driving
Casing Protection: Open Type
Number of Poles: 2
Customization:
Available

|

electric motor

Can electric motors be adapted for use in both residential and industrial settings?

Yes, electric motors can be adapted for use in both residential and industrial settings. Their versatility, efficiency, and wide range of power options make them suitable for various applications in both environments. Here’s a detailed explanation of how electric motors can be adapted for use in residential and industrial settings:

  1. Residential Applications: Electric motors find numerous applications in residential settings, where their compact size, quiet operation, and energy efficiency are highly valued. Some common residential uses of electric motors include:
    • Home Appliances: Electric motors power a wide range of home appliances such as refrigerators, washing machines, dishwashers, vacuum cleaners, fans, and air conditioners. These motors are designed to provide efficient and reliable operation while minimizing noise and energy consumption.
    • Garage Door Openers: Electric motors are commonly used in residential garage door openers, providing convenient and automated access to the garage.
    • HVAC Systems: Electric motors drive the fans and compressors in heating, ventilation, and air conditioning (HVAC) systems, contributing to efficient climate control and indoor comfort.
    • Pool Pumps: Electric motors power pool pumps, circulating water and maintaining water quality in residential swimming pools.
    • Power Tools: Electric motors are integral components of various power tools used in residential settings, including drills, saws, and trimmers.
  2. Industrial Applications: Electric motors are extensively used in industrial settings due to their reliability, controllability, and adaptability to various industrial processes. Some common industrial applications of electric motors include:
    • Manufacturing Machinery: Electric motors drive a wide range of manufacturing machinery, including conveyor systems, pumps, compressors, mixers, and agitators. These motors are capable of providing precise speed and torque control, enhancing productivity and process efficiency.
    • Industrial Fans and Blowers: Electric motors power fans and blowers for ventilation, cooling, and air circulation in industrial facilities, contributing to a comfortable and safe working environment.
    • Machine Tools: Electric motors drive machine tools such as lathes, milling machines, and grinders, enabling precision machining operations in industrial manufacturing processes.
    • Material Handling Equipment: Electric motors are widely used in material handling equipment such as forklifts, conveyor systems, and hoists, facilitating efficient movement and transportation of goods within industrial facilities.
    • Pumps and Compressors: Electric motors power pumps and compressors in industrial applications, such as water supply systems, HVAC systems, and pneumatic systems.
  3. Adaptability and Customization: Electric motors can be adapted and customized to meet specific requirements in both residential and industrial settings. They are available in a wide range of sizes, power ratings, and configurations to accommodate diverse applications. Motors can be designed for different voltages, frequencies, and environmental conditions, allowing for seamless integration into various systems and equipment. Additionally, advancements in motor control technologies, such as variable frequency drives (VFDs), enable precise speed and torque control, making electric motors highly versatile and adaptable to different operational needs.
  4. Energy Efficiency and Environmental Benefits: The use of electric motors in both residential and industrial settings offers significant energy efficiency advantages. Electric motors have higher efficiency compared to other types of motors, resulting in reduced energy consumption and operational costs. Furthermore, electric motors produce zero direct emissions at the point of use, contributing to a cleaner and more sustainable environment. In residential settings, energy-efficient electric motors in appliances and HVAC systems help homeowners reduce their energy bills and minimize their carbon footprint. In industrial applications, the adoption of electric motors supports energy conservation initiatives and aligns with sustainability goals.

In summary, electric motors are adaptable for use in both residential and industrial settings. Their compact size, energy efficiency, controllability, and versatility make them suitable for a wide range of applications, from home appliances and garage door openers to manufacturing machinery and material handling equipment. The use of electric motors brings benefits such as improved energy efficiency, reduced emissions, quieter operation, and enhanced control, contributing to the efficiency and sustainability of residential and industrial operations.

electric motor

How do electric motors impact the overall productivity of manufacturing processes?

Electric motors have a significant impact on the overall productivity of manufacturing processes. Their versatility, reliability, and efficiency make them essential components in a wide range of industrial applications. Here’s a detailed explanation of how electric motors contribute to enhancing productivity in manufacturing:

  1. Mechanization and Automation: Electric motors serve as the primary power source for a vast array of industrial machinery and equipment. By providing mechanical power, electric motors enable mechanization and automation of manufacturing processes. They drive conveyor belts, pumps, compressors, robots, and other machinery, allowing for efficient material handling, assembly, and production operations. The use of electric motors in mechanized and automated systems reduces manual labor, accelerates production rates, and improves overall productivity.
  2. Precise Control and Repeatable Movements: Electric motors offer precise control over speed, position, and torque, enabling accurate and repeatable movements in manufacturing processes. This precision is crucial for tasks that require consistent and controlled operations, such as precision cutting, drilling, machining, and assembly. Electric motors allow for fine adjustments and control, ensuring that manufacturing operations are performed with high levels of accuracy and repeatability, which ultimately enhances productivity and product quality.
  3. High Speed and Acceleration: Electric motors are capable of achieving high rotational speeds and rapid acceleration, enabling fast-paced manufacturing processes. Motors with high-speed capabilities are utilized in applications that require quick operations, such as high-speed machining, packaging, and sorting. The ability of electric motors to rapidly accelerate and decelerate facilitates efficient cycle times and overall process throughput, contributing to increased productivity.
  4. Reliability and Durability: Electric motors are known for their reliability and durability, making them well-suited for demanding manufacturing environments. With proper maintenance, electric motors can operate continuously for extended periods, minimizing downtime due to motor failures. The reliability of electric motors ensures consistent and uninterrupted production, optimizing manufacturing productivity and reducing costly disruptions.
  5. Energy Efficiency: Electric motors have witnessed significant advancements in energy efficiency, leading to reduced energy consumption in manufacturing processes. Energy-efficient motors convert a higher percentage of electrical input power into useful mechanical output power, resulting in lower energy costs. By utilizing energy-efficient electric motors, manufacturers can achieve cost savings and improve the overall sustainability of their operations. Additionally, energy-efficient motors generate less heat, reducing the need for cooling and improving the overall efficiency of auxiliary systems.
  6. Integration with Control Systems: Electric motors can be seamlessly integrated with sophisticated control systems and automation technologies. This integration allows for centralized control, monitoring, and optimization of manufacturing processes. Control systems can regulate motor speed, torque, and performance based on real-time data, enabling adaptive and efficient operations. The integration of electric motors with control systems enhances the overall productivity by optimizing process parameters, minimizing errors, and facilitating seamless coordination between different stages of manufacturing.

Electric motors significantly impact the overall productivity of manufacturing processes by enabling mechanization, automation, precise control, high-speed operations, reliability, energy efficiency, and integration with advanced control systems. Their versatility and performance characteristics make them indispensable in a wide range of industries, including automotive, electronics, aerospace, food processing, and more. By harnessing the power of electric motors, manufacturers can streamline operations, improve product quality, increase throughput, and ultimately enhance productivity in their manufacturing processes.

electric motor

What are the different types of electric motors available?

There are various types of electric motors available, each designed for specific applications and operating principles. These motors differ in their construction, power sources, and performance characteristics. Here is an overview of some common types of electric motors:

  1. DC Motors: DC (Direct Current) motors are widely used and come in different configurations. The most common types include brushed DC motors and brushless DC motors. Brushed DC motors use brushes and a commutator to switch the direction of current in the rotor, while brushless DC motors use electronic commutation. DC motors offer good speed control and torque characteristics, making them suitable for applications like robotics, electric vehicles, and small appliances.
  2. AC Motors: AC (Alternating Current) motors are classified into several types, including induction motors, synchronous motors, and universal motors. Induction motors are popular for their simplicity and reliability. They operate based on electromagnetic induction and are commonly used in industrial and residential applications. Synchronous motors operate at a constant speed and are often used in applications that require precise control, such as industrial machinery and synchronous clocks. Universal motors are designed to operate on both AC and DC power sources and are commonly found in household appliances like vacuum cleaners and power tools.
  3. Stepper Motors: Stepper motors are designed to move in discrete steps or increments, making them suitable for applications that require precise positioning. They are often used in robotics, 3D printers, CNC machines, and other automated systems. Stepper motors are available in various configurations, including permanent magnet stepper motors, variable reluctance stepper motors, and hybrid stepper motors.
  4. Servo Motors: Servo motors are a type of motor that combines a DC motor with a feedback control mechanism. They are known for their precise control over position, velocity, and acceleration. Servo motors are commonly used in robotics, industrial automation, and applications that require accurate motion control, such as robotic arms, RC vehicles, and camera gimbals.
  5. Linear Motors: Linear motors are designed to produce linear motion instead of rotational motion. They operate on similar principles as rotary motors but with a different mechanical arrangement. Linear motors find applications in high-speed transportation systems, cutting machines, and other systems that require linear motion without the need for mechanical conversion from rotary to linear motion.
  6. Haptic Motors: Haptic motors, also known as vibration motors, are small motors used to create tactile feedback or vibrations in electronic devices. They are commonly found in smartphones, game controllers, wearable devices, and other gadgets that require haptic feedback to enhance the user experience.

These are just a few examples of the different types of electric motors available. Each type has its own advantages, limitations, and specific applications. The selection of an electric motor depends on factors such as the required torque, speed, control, efficiency, and the specific needs of the application at hand.

China Best Sales 12V 20rpm Worm Geared Motor High Torque Electric DC Motor Metal   vacuum pump engine	China Best Sales 12V 20rpm Worm Geared Motor High Torque Electric DC Motor Metal   vacuum pump engine
editor by CX 2024-04-13